Exit times for ARMA processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On first exit times for homogeneous diffusion processes

Here t ≥ 0, wt is a standard d-dimensional Wiener process, coordinated as usual with some rightcontinuous non-decreasing flow of σ-algebras Ft ⊂ F ; fi and βi are nonrandom functions with respective values in R and R, (here and elsewhere i = 1, 2). The random vectors ai are measurable with respect to the σ-algebra F0 and ai ∈ Q̄ with probability 1(Q̄ denotes the closure of the region Q ). All vec...

متن کامل

Parametric Estimation of Diffusion Processes Sampled at First Exit Times

This paper introduces a family of recursively defined estimators of the parameters of a diffusion process. We use ideas of stochastic algorithms for the construction of the estimators. Asymptotic consistency of these estimators and asymptotic normality of an appropriate normalization are proved. The results are applied to two examples from the financial literature; viz., Cox-Ingersoll-Ross’ mod...

متن کامل

On exit times of Lévy-driven Ornstein–Uhlenbeck processes

We prove two martingale identities which involve exit times of Lévy-driven Ornstein–Uhlenbeck processes. Using these identities we find an explicit formula for the Laplace transform of the exit time under the assumption that positive jumps of the Lévy process are exponentially distributed.

متن کامل

Discrete-valued ARMA processes

This paper presents a unified framework of stationary ARMA processes for discrete-valued time series based on Pegram’s [Pegram, G.G.S., 1980. An autoregressive model for multilag markov chains. J. Appl. Probab. 17, 350–362] mixing operator. Such a stochastic operator appears to be more flexible than the currently popular thinning operator to construct Box and Jenkins’ type stationary ARMAproces...

متن کامل

Inverse Exit times ∗

Normalized cut is a widely used measure of separation between clusters in a graph. In this paper we provide a novel probabilistic perspective on this measure. We show that for a partition of a graph into two weakly connected sets, V = A B, the multiway normalized cut is approximately MNcut ≈ 1/τA→B + 1/τB→A, where τA→B is the unidirectional characteristic exit time of a random walk from subset ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Probability

سال: 2018

ISSN: 0001-8678,1475-6064

DOI: 10.1017/apr.2018.79